
🧰 Python Code Quality & Performance Toolkit

Objetivo: Ferramentas para análise de qualidade, performance, complexidade, segurança e estilo em
projetos Python.

🧠 1. Métricas de Complexidade e Manutenibilidade

Ferramenta Comando principal Descrição

Radon radon cc . -a
Calcula complexidade ciclomática, Halstead
metrics e índice de manutenibilidade.

Xenon
xenon . --max-absolute B
--max-modules A

Extensão do Radon, enforce limites de
complexidade (CI/CD friendly).

Wily
wily build . && wily
report

Mede evolução da complexidade com base no
histórico do Git.

Lizard lizard .
Análise rápida de complexidade e tamanho de
funções.

⚙️ 2. Lint e Análise Estática

Ferramenta Comando principal Descrição

Flake8 flake8 . Verifica erros de estilo e más práticas (PEP8).

Pylint
pylint
my_module.py

Avalia qualidade geral do código com pontuação de 0–10.

Ruff ruff check .
Linter moderno, muito rápido; substitui flake8 + isort + parte
do mypy.

Bandit bandit -r . Detecta falhas de segurança em código Python.

🧮 3. Tipagem e Contratos

Ferramenta Comando principal Descrição

Mypy mypy . Verifica tipos estáticos usando type hints (PEP484).

Pyright pyright
Alternativa rápida para análise de tipos (VSCode usa
internamente).

Deal
decorators @pre , @post ,
@inv

Implementa Design by Contract (pré/pós-condições).

Typeguard @typechecked Faz checagem de tipos em runtime.

🚀

🚀 4. Performance e Profiling

Ferramenta Comando principal Descrição

cProfile
python -m cProfile -o output.prof
script.py

Profiler padrão de CPU.

pstats python -m pstats output.prof Analisa resultados do cProfile.

line_profiler /
lineviz

kernprof -l script.py && python -
m line_profiler script.py.lprof

Mede tempo por linha de código.

memory_profiler
python -m memory_profiler
script.py

Mede uso de memória por linha.

py-spy py-spy top --pid <PID>
Profiler externo, ideal para
produção.

scalene scalene script.py
Perfil CPU + memória + tempo
por linha com visualização
colorida.

perf python -m perf timeit 'code'
Benchmarks precisos e
reprodutíveis.

🧪 5. Testes e Cobertura

Ferramenta Comando principal Descrição

Pytest pytest
Framework de testes mais usado e
extensível.

Coverage.py
coverage run -m pytest && coverage
report

Mede cobertura de código.

pytest-cov pytest --cov=package_name Integra pytest + coverage.

Mutmut mutmut run
Faz mutation testing, testa robustez
dos testes.

🛡️ 6. Segurança e Dependências

Ferramenta Comando principal Descrição

pip-audit pip-audit Detecta vulnerabilidades (CVE) em dependências.

Safety safety check Verifica dependências inseguras.

Deptry deptry . Detecta dependências não usadas ou faltando.

pip-check-reqs pip-missing-reqs . Valida se requirements.txt está correto.

🧾

🧾 7. Estilo e Formatação

Ferramenta Comando principal Descrição

Black black . Formata código automaticamente (PEP8).

Isort isort . Ordena imports de forma consistente.

Docformatter docformatter -r . Formata docstrings (PEP257).

Pre-commit pre-commit install Executa linters e formatadores antes de commits.

🧩 8. Manutenibilidade e Visualização

Ferramenta Comando principal Descrição

Vulture vulture . Encontra código morto (funções/imports não usados).

Pydeps pydeps my_package Gera gráfico de dependências entre módulos.

Code2Flow code2flow my_module.py Gera diagrama de fluxo de execução.

SonarQube CI/CD integration Análise avançada de qualidade e dívida técnica.

🧱 9. Pipeline Ideal de Qualidade

Instalação
pip install black ruff mypy pytest pytest-cov radon scalene

Fluxo recomendado
black . # Formata código
ruff check . # Lint e estilo
mypy . # Tipagem estática
radon cc . -a # Complexidade ciclomática
pytest --cov # Testes + cobertura
scalene main.py # Profiling detalhado

🧾 Referências Rápidas

📘 PEP8 – Estilo de Código: https://peps.python.org/pep-0008/
📗 PEP484 – Tipagem: https://peps.python.org/pep-0484/
📙 PEP257 – Docstrings: https://peps.python.org/pep-0257/

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0257/

